Анатолий токов

Что такое электрический ток и напряжение

Электрический ток – это упорядоченное движение заряженных частиц (носителей электрического заряда). Носителями электрического тока являются электроны (в металлах и газах), катионы и анионы (в электролитах), дырки при электронно-дырочной проводимости. Данное явление проявляется созданием магнитного поля, изменением химического состава или нагреванием проводников. Основными характеристиками тока являются:

  • сила тока, определяемая по закону Ома и измеряемая в Амперах (А), в формулах обозначается буквой I;
  • мощность, согласно закону Джоуля-Ленца, измеряемая в ваттах (Вт), обозначается буквой P;
  • частота, измеряемая в герцах (Гц).

Электрический ток, как носитель энергии используют для получения механической энергии с помощью электродвигателей, для получения тепловой энергии в отопительных приборах, электросварке и нагревателях, возбуждения электромагнитных волн различной частоты, создания магнитного поля в электромагнитах и для получения световой энергии в осветительных приборах и различного рода лампах.

Напряжение – это работа, совершаемая электрическим полем для перемещения заряда в 1 кулон (Кл) из одной точки проводника в другую. Исходя из данного определения, все-таки сложно осознать, что же такое напряжение.

Чтобы заряженные частицы перемещались от одного полюса к другому, необходимо создать между этими полюсами разность потенциалов (именно она и именуется напряжением). Единицей измерения напряжения является вольт (В).

Для окончательного понимания определения электрического тока и напряжения, можно привести интересную аналогию: представьте, что электрический заряд — это вода, тогда давление воды в столбе – это и есть напряжение, а скорость потока воды в трубе – это сила электрического тока. Чем выше напряжение, тем больше сила электрического тока.

Что такое переменный ток

Если менять полярность потенциалов, то направление протекания электрического тока меняется. Именно такой ток и называется переменным. Количество изменений направления за определенный промежуток времени называется частотой и измеряется, как уже было сказано выше, в герцах (Гц). Например, в стандартной электрической сети в нашей стране частота равна 50 Гц, то есть направление движения тока за секунду меняется 50 раз.

Что такое постоянный ток

Когда упорядоченное движение заряженных частиц имеет всегда только одно направление, то такой ток именуется постоянным. Постоянный ток возникает в сети постоянного напряжения, когда полярность зарядов с одной и другой стороны постоянна во времени. Его очень часто используют в различных электронных устройствах и технике, когда не требуется передача энергии на большое расстояние.

Амперметр

Мы знаем, куда ток направлен, в чем измеряется сила тока, как ее вычислить, зная заряд и время, за которое этот заряд прошел. Осталось только измерить.

Прибор для измерения силы тока называется амперметр. Его включают в электрическую цепь последовательно с тем проводником, в котором ток измеряют.

Амперметры бывают очень разными по принципу действия: электромагнитные, магнитоэлектрические, электродинамические, тепловые и индукционные — и это только самые распространенные.

Мы рассмотрим только принцип действия теплового амперметра, потому что для понимания принципа действия других устройств необходимо знать, что такое магнитное поле и катушки.

Тепловой амперметр основан на свойстве тока нагревать провода. Устроен так: к двум неподвижным зажимам присоединена тонкая проволока. Эта тонкая проволока оттянута вниз шелковой нитью, связанной с пружиной. По пути эта нить петлей охватывает неподвижную ось, на которой закреплена стрелка. Измеряемый ток подводится к неподвижным зажимам и проходит через проволоку (на рисунке стрелками показан путь тока).

Под действием тока проволока немного нагреется, из-за чего удлинится, вследствие этого шелковая нить, прикрепленная к проволоке, оттянется пружиной. Движение нити повернет ось, а значит и стрелку. Стрелка покажет величину измерения.

«Постоянный электрический ток. Действие электрического тока»

Электрический ток — это упорядоченное движение заряженных частиц.  Для того чтобы в проводнике существовал электрический ток, необходимы два условия: 1) наличие свободных заряженных частиц, 2) электрическое поле, которое создаёт их направленное движение. Проходя по цепи, происходит действие электрического тока (тепловое, магнитное, химическое).

При существовании тока в разных средах: в металлах, жидкостях, газах — электрический заряд переносится разными частицами. В металлах этими частицами являются электроны, в жидкостях заряд переносится ионами, в газах — электронами, положительными и отрицательными ионами.

Дистиллированная вода не проводит электрический ток, поскольку она не содержит свободных зарядов. Если в воду добавить поваренную соль или медный купорос, то в ней появятся свободные заряды, и она станет проводником электрического тока.

Газы в обычных условиях тоже не проводят электрический ток, так как в них нет свободных зарядов. Однако если в воздушный промежуток между двумя металлическими пластинами, соединёнными с источником тока, внести зажжённую спичку или спиртовку, то газ станет проводником и гальванометр зафиксирует протекание тока по цепи.

Постоянный электрический ток

Постоянный электрический ток — это электрический ток, который с течением времени не изменяется по величине и направлению. Постоянный ток является разновидностью однонаправленного тока (англ. direct current), т.е. тока, не изменяющий своего направления. Часто можно встретить сокращения DC от первых букв англ. слов, или символом по ГОСТ 2.721-74.

На рисунке красным цветом изображён график постоянного тока. По горизонтальной оси отложен масштаб времени t, а по вертикальной — масштаб тока I или электрического напряжения U. Как видно, график постоянного тока представляет собой прямую линию, параллельную горизонтальной оси (оси времени).

При постоянном токе через каждое поперечное сечение проводника в единицу времени протекает одинаковое количество электричества (электрических зарядов). Постоянный электрический ток — это постоянное направленное движение заряженных частиц в электрическом поле.

Источник тока

Направленное движение зарядов обеспечивается электрическим полем. Электрическое поле в проводниках создаётся и поддерживается источником тока. В источнике тока совершается работа по разделению положительно и отрицательно заряженных частиц. Эти частицы накапливаются на полюсах источника тока. Один полюс источника заряжается положительно, другой — отрицательно. Между полюсами источника образуется электрическое поле, под действием которого заряженные частицы начинают двигаться упорядоченно.

В источнике тока совершается работа при разделении заряженных частиц. При этом различные виды энергии превращаются в электрическую энергию. В электрофорной машине в электрическую энергию превращается механическая энергия, в гальваническом элементе — химическая.

Действие электрического тока

Электрический ток, проходя по цепи, производит различные действия. Тепловое действие электрического тока заключается в том, что при его прохождении по проводнику в нём выделяется некоторое количество теплоты. Пример применения теплового действия тока — электронагревательные элементы чайников, электроплит, утюгов и пр. В ряде случаев температура проводника нагревается настолько сильно, что можно наблюдать его свечение. Это происходит в электрических лампочках накаливания.

Магнитное действие электрического тока проявляется в том, что вокруг проводника с током возникает магнитное поле, которое, действуя на магнитную стрелку, расположенную рядом с проводником, заставляет её поворачиваться. Благодаря магнитному действию тока можно превратить железный гвоздь в электромагнит, намотав на него провод, соединённый с источником тока. При пропускании по проводу электрического тока гвоздь будет притягивать железные предметы.

Химическое действие электрического тока проявляется в том, что при его прохождении в жидкости на электроде выделяется вещество. Если в стакан с раствором медного купороса поместить угольные электроды и присоединить их к источнику тока, то, вынув через некоторое время эти электроды из раствора, можно обнаружить на электроде, присоединённом к отрицательному полюсу источника (на катоде), слой чистой меди.

Некоторые источники утверждают, что существует также механическое действие (например, рамка, по которой течет ток, поворачивается, если её поместить между полюсами магнитов) и световое (светодиоды).

Конспект по по физике в 8 классе: «Постоянный электрический ток. Действие электрического тока».

Следующая тема: «Сила тока. Напряжение»

Устройство и принцип действия

Конструктивно ТН особо не отличается от других типов преобразующих устройств. Его устройство:

  • магнитный сердечник, шихтованный из пластин электротехнической стали;
  • первичная катушка;
  • одна или две вторичные обмотки;
  • защитный кожух (для конструкций уличного типа).

Внешний вид и схематическое изображение изделия смотрите на рис.1. На картинке изображено устройство с одной (основной) вторичной обмоткой. На некоторых моделях есть дополнительная вторичная обмотка, которая может использоваться, например, для подключения приборов измерения.


Рис. 1. Трансформатор напряжения. Строение

Обратите внимание на то, что между выводами первичных обмоток и вторичными катушками отсутствует гальваническая связь. Это главное отличие измерительных трансформаторов от конструкции обычного понижающего трансформатора

Защитные кожухи изготовляются из разных материалов. В моделях, используемых для обслуживания высоковольтных ЛЭП, применяют диэлектрики, изготовленные из фарфора (рис. 2),


Рис. 2. ТН на 110 кВ

Для охлаждения обмоток таких высоковольтных агрегатов применяют специальные трансформаторные масла.

В сетях средней мощности применяют модели с корпусами на основе эпоксидных смол (рис. 3).


Рис. 3. ТН наружного типа

Трехфазные ТН с нулевыми выводами выполняются на магнитопроводе с пятью стержнями. Такая конструкция защищает обмотки от перегрева, так как при однофазных замыканиях в цепях высоковольтных проводов цепь линий суммарного магнитного потока в самом трансформаторе замыкается по стали сердечника.

Принцип действия также мало отличается от работы силового понижающего трансформатора. Магнитный поток, возникающий в первичной катушке, распространяется по магнитопроводу, вызывая напряжение ЭДС во вторичной обмотке. Величина напряжения зависит от соотношения числа витков в катушках. Поскольку вторичные обмотки состоят из малого количества витков, то и выходное напряжение небольшое (обычно оно не превышает 100 В).

Принцип работы ТН объясняет схема на рисунке 4.


Рис. 4. Принцип работы трансформатора напряжения

Важной задачей при изготовлении трансформаторов данного типа является выполнение требований по достижению необходимых амплитудных и угловых параметров синусоиды, определяющих соответствующий класс точности: 0,5; 1; 3. В эталонных образцах применяется класс точности 0,2

Для измерительных приборов важно чтобы класс точности был максимально высоким. Чем он выше, тем меньшая погрешность измерения прибора.

Точность параметров преобразованных переменных токов зависит от нагрузки. Чем выше нагрузка вторичной цепи, тем больше погрешность трансформатора напряжения (снижается класс точности). Оптимальные параметры напряжения на выходе трансформатора достигаются при номинальных нагрузках. В этом режиме эффективность преобразования тока возрастает по мере приближения к номинальному коэффициенту трансформации.

Работа ТН эффективна при малых номинальных мощностях во вторичных цепях. Для этих устройств длительное состояние в режиме холостого хода является нормой. Поэтому они эффективно используются в системах защиты линий, которые большую часть времени находятся в режиме ожидания и потребляют мало тока.

Направление тока

Раньше в учебниках по физике писали так: когда-то давно решили, что ток направлен от плюса к минуса, а потом узнали, что по проводам текут электроны. Но электроны эти — отрицательные, а значит к минусу идти не могут. Но раз уже условились о направлении, поэтому оставим, как есть. Вопрос тогда возникал у всех: почему нельзя поменять направление тока? Но ответ так никто и не получил.

Сейчас пишут немного иначе: положительные частицы текут по проводнику от плюса к минусу, туда и направлен ток. Здесь вопросов ни у кого не возникает.

Так и какая версия верна?

На самом деле, обе. Носители заряда в каждом типе материала разные. В металлах — это электроны, в электролитах — ионы. У каждого типа частиц свои знаки и потребность в том, чтобы бежать к противоположно заряженному полюса источника тока.

Не будем же мы для каждого типа материала выбирать направление тока, чтобы решить задачу! Поэтому принято направлять ток от плюса к минусу. В большинстве задач школьного курса направление тока роли не играет, но есть то самое коварное меньшинство, где этот момент будет очень важным. Поэтому запомните — направляем ток от плюса к минусу.

Электрические токи в природе

Молния

Атмосферное электричество — электричество, которое содержится в воздухе. Впервые показал присутствие электричества в воздухе и объяснил причину грома и молнии Бенджамин Франклин.

В дальнейшем было установлено, что электричество накапливается в сгущении паров в верхних слоях атмосферы, и указаны следующие законы, которым следует атмосферное электричество:

  • при ясном небе, так же как и при облачном, электричество атмосферы всегда положительное, если на некотором расстоянии от места наблюдения не идёт дождь, град или снег;
  • напряжение электричества облаков становится достаточно сильным для выделения его из окружающей среды лишь тогда, когда облачные пары сгущаются в дождевые капли, доказательством чего может служить то, что разрядов молний не бывает без дождя, снега или града в месте наблюдения, исключая возвратный удар молнии;
  • атмосферное электричество увеличивается по мере возрастания влажности и достигает максимума при падении дождя, града и снега;
  • место, где идёт дождь, является резервуаром положительного электричества, окружённым поясом отрицательного, который, в свою очередь, заключён в пояс положительного. На границах этих поясов напряжение равно нулю.

Движение ионов под действием сил электрического поля формирует в атмосфере вертикальный ток проводимости со средней плотностью, равной около (2÷3)·10−12 А/м².

Полный ток, текущий на всю поверхность Земли, при этом составляет приблизительно 1800 А.

Молния является естественным искровым электрическим разрядом. Была установлена электрическая природа полярных сияний. Огни святого Эльма — естественный коронный электрический разряд.

Биотоки — движение ионов и электронов играет весьма существенную роль во всех жизненных процессах. Создаваемый при этом биопотенциал существует как на внутриклеточном уровне, так и у отдельных частей тела и органов. Передача нервных импульсов происходит при помощи электрохимических сигналов. Некоторые животные (электрические скаты, электрический угорь) способны накапливать потенциал в несколько сот вольт и используют это для самозащиты.

Классификация

Если заряженные частицы движутся внутри макроскопических тел относительно той или иной среды, то такой ток называют электрический ток проводимости. Если движутся макроскопические заряженные тела (например, заряженные капли дождя), то этот ток называют конвекционный ток. Различают переменный (англ. alternating current, AC), постоянный (англ. direct current, DC) и пульсирующий электрические токи, а также их всевозможные комбинации. В таких понятиях часто слово «электрический» опускают. Постоянный ток — ток, направление и величина которого слабо меняются во времени.

Переменный ток — ток, величина и направление которого меняются во времени. В широком смысле под переменным током понимают любой ток, не являющийся постоянным. Среди переменных токов основным является ток, величина которого изменяется по синусоидальному закону.

Ток течет по проводам высоковольтных линий электропередач, ток вращает стартер и заряжает аккумулятор в нашем автомобиле, молния во время грозы — это тоже электрический ток.

Электрические разряды

В этом случае потенциал каждого конца проводника изменяется по отношению к потенциалу другого конца проводника попеременно с положительного на отрицательный и наоборот, проходя при этом через все промежуточные потенциалы (включая и нулевой потенциал).

В результате возникает ток, непрерывно изменяющий направление: при движении в одном направлении он возрастает, достигая максимума, именуемого амплитудным значением, затем спадает, на какой-то момент становится равным нулю, потом вновь возрастает, но уже в другом направлении и также достигает максимального значения, спадает, чтобы затем вновь пройти через ноль, после чего цикл всех изменений возобновляется.

Таблица электрический ток и его единицы измерения.

Квазистационарный ток

Это «относительно медленно изменяющийся переменный ток, для мгновенных значений которого с достаточной точностью выполняются законы постоянных токов» (БСЭ). Этими законами являются закон Ома, правила Кирхгофа и другие. Квазистационарный ток, так же как и постоянный ток, имеет одинаковую силу тока во всех сечениях неразветвлённой цепи. При расчёте цепей квазистационарного тока из-за возникающей э. д. с. индукции ёмкости и индуктивности учитываются как сосредоточенные параметры. Квазистационарными являются обычные промышленные токи, кроме токов в линиях дальних передач, в которых условие квазистационарности вдоль линии не выполняется.

Переменный ток высокой частоты — ток, в котором условие квазистационарности уже не выполняется, ток проходит по поверхности проводника, обтекая его со всех сторон. Этот эффект называется скин-эффектом.

Вихревые токи (токи Фуко)

Замкнутые электрические токи в массивном проводнике, которые возникают при изменении пронизывающего его магнитного потока», поэтому вихревые токи являются индукционными токами. Чем быстрее изменяется магнитный поток, тем сильнее вихревые токи. Вихревые токи не текут по определённым путям в проводах, а замыкаясь в проводнике образуют вихреобразные контуры.

Вихревой ток

Существование вихревых токов приводит к скин-эффекту, то есть к тому, что переменный электрический ток и магнитный поток распространяются в основном в поверхностном слое проводника. Нагрев вихревыми токами проводников приводит к потерям энергии, особенно в сердечниках катушек переменного тока.

Для уменьшения потерь энергии на вихревые токи применяют деление магнитопроводов переменного тока на отдельные пластины, изолированные друг от друга и расположенные перпендикулярно направлению вихревых токов, что ограничивает возможные контуры их путей и сильно уменьшает величину этих токов.

П

ри очень высоких частотах вместо ферромагнетиков для магнитопроводов применяют магнитодиэлектрики, в которых из-за очень большого сопротивления вихревые токи практически не возникают.

Поверка

Поверка измерительных трансформаторов, трансформаторов напряжения, поверки трансформаторов тока всех возможных видов не имеют одного фиксированного срока.  Разные типы и модели имеют свою периодичность поверочных мер.

Межповерочный интервал находится в диапазоне 4–16 лет. Например (модель — срок в годах):

  • ТТИ-А — 5;
  • ТОП — 8;
  • ТШП — 16;
  • ТОЛ-10 — 8;
  • ТПЛ-10 — 8.

Узнать сроки можно из таких источников:

  • паспорт изделия. Самый простой способ, так как данная информация в технической документации на такой товар обязательная. Если оригинальные бумаги утеряны, то можно направить запрос производителю. Примерные данные можно узнать из интернета — в сети есть сканы и образцы паспортов;
  • у завода-изготовителя;
  • в сертификате предыдущей процедуры;
  • ГОСТ 7746-2015.

Поверки нужны для допуска к эксплуатации, мероприятие осуществляют специальные аккредитованные и лицензированные учреждения, лаборатории, структуры энергетических компаний. Исполнитель должен иметь соответствующее свидетельство. После мероприятия его проведение и состояние изделия подтверждается поверительным клеймом, пломбой, отметкой в паспорте, протоколом.

Основная цель поверки — определить погрешность. По непригодным изделиям гасят клеймо, вносят запись в паспорт, выдают извещение о непригодности, аннулируют предыдущие свидетельства.

При тестировании используют несколько методик и приборов (мегаомметры, вольтметры, амперметры, приборы сравнения токов). Подробно процедура прописана в ГОСТе 8.217-2003.

Электробезопасность

Предупреждение по электробезопасности

Включает в себя правовые, социально-экономические, организационно-технические, санитарно-гигиенические, лечебно-профилактические, реабилитационные и иные мероприятия. Правила электробезопасности регламентируются правовыми и техническими документами, нормативно-технической базой. Знание основ электробезопасности обязательно для персонала, обслуживающего электроустановки и электрооборудование. Тело человека является проводником электрического тока. Сопротивление человека при сухой и неповрежденной коже колеблется от 3 до 100 кОм.

Ток, пропущенный через организм человека или животного, производит следующие действия:

  • термическое (ожоги, нагрев и повреждение кровеносных сосудов);
  • электролитическое (разложение крови, нарушение физико-химического состава);
  • биологическое (раздражение и возбуждение тканей организма, судороги)
  • механическое (разрыв кровеносных сосудов под действием давления пара, полученного нагревом током крови)

Основным фактором, обуславливающим исход поражения током, является величина тока, проходящего через тело человека. По технике безопасности электрический ток классифицируется следующим образом:

  • »безопасным» считается ток, длительное прохождение которого через организм человека не причиняет ему вреда и не вызывает никаких ощущений, его величина не превышает 50 мкА (переменный ток 50 Гц) и 100 мкА постоянного тока;
  • »минимально ощутимый» человеком переменный ток составляет около 0,6—1,5 мА (переменный ток 50 Гц) и 5—7 мА постоянного тока;
  • пороговым »неотпускающим» называется минимальный ток такой силы, при которой человек уже неспособен усилием воли оторвать руки от токоведущей части. Для переменного тока это около 10—15 мА, для постоянного — 50—80 мА;
  • »фибрилляционным порогом» называется сила переменного тока (50 Гц) около 100 мА и 300 мА постоянного тока, воздействие которого дольше 0,5 с с большой вероятностью вызывает фибрилляцию сердечных мышц. Этот порог одновременно считается условно смертельным для человека.

В России в соответствии c Правилами технической эксплуатации электроустановок потребителей (Приказ Минэнерго РФ от 13.01.2003 № 6 «Об утверждении Правил технической эксплуатации электроустановок потребителей») и Правилами по охране труда при эксплуатации электроустановок (Приказ Минэнерго РФ от 27.12.2000 N 163 «Об утверждении Межотраслевых правил по охране труда (правил безопасности) при эксплуатации электроустановок»), установлено 5 квалификационных групп по электробезопасности в зависимости от квалификации и стажа работника и напряжения электроустановок.

Проводники и диэлектрики

Некоторые делят мир на черное и белое, а мы — на проводники и диэлектрики.

  • Проводники — это материалы, через которые электрический ток проходит. Самыми лучшими проводниками являются металлы.
  • Диэлектрики — материалы, через которые ток не проходит. Изи!

Проводники

Диэлектрики

Медь, железо, алюминий, олово, свинец, золото, серебро, хром, никель, вольфрам

Воздух, дистиллированная вода, поливинилхлорид, янтарь, стекло, резина, полиэтилен, полипропилен, полиамид, сухое дерево, каучук

То, что диэлектрик не проводит электрический ток, не значит, что он не может накапливать заряд. Накопление заряда не зависит от возможности его передавать.

Основные типы проводников

В отличие от диэлектриков в проводниках имеются свободные носители нескомпенсированных зарядов, которые под действием силы, как правило разности электрических потенциалов, приходят в движение и создают электрический ток. Вольтамперная характеристика (зависимость силы тока от напряжения) является важнейшей характеристикой проводника. Для металлических проводников и электролитов она имеет простейший вид: сила тока прямо пропорциональна напряжению (закон Ома).

Металлы — здесь носителями тока являются электроны проводимости, которые принято рассматривать как электронный газ, отчётливо проявляющий квантовые свойства вырожденного газа.

Плазма — ионизированный газ. Электрический заряд переносится ионами (положительными и отрицательными) и свободными электронами, которые образуются под действием излучения (ультрафиолетового, рентгеновского и других) и (или) нагревания.

Электролиты — жидкие или твёрдые вещества и системы, в которых присутствуют в сколько-нибудь заметной концентрации ионы, обусловливающие прохождение электрического тока. Ионы образуются в процессе электролитической диссоциации. При нагревании сопротивление электролитов падает из-за увеличения числа молекул, разложившихся на ионы. В результате прохождения тока через электролит ионы подходят к электродам и нейтрализуются, оседая на них. Законы электролиза Фарадея определяют массу вещества, выделившегося на электродах.

Существует также электрический ток электронов в вакууме, который используется в электронно-лучевых приборах.

Детство и юность

Анатолий Токов родился 17 февраля 1990 года в Тобольске. Мама бойца по национальности кабардинка, отец – русский. Толик вырос в сложные 90-е годы. Многие мальчишки тогда завороженно смотрели западные боевики, мечтая стать такими же мастерами боевых искусств. Не избежал этого и маленький Анатолий.

Анатолий Токов в 2018 году

Увлеченный фильмами с участием Джеки Чана и Жан-Клода Ван Дамма, 15-летний мальчик с другом отправились записываться в секцию бокса. Но ближайшим залом, в котором были представлены боевые искусства, оказался спортивный клуб единоборств «Сибиряк» с секцией армейского рукопашного боя. Это и определило дальнейшую судьбу подростка. Родители одобрили увлечение сына, но поставили условие: успеваемость в школе страдать не должна.

Анатолий Токов и его дедушка

Первым тренером Толи стал Андрей Михайлович Сабаров, который, по словам бойца, «воспитал характер, желание побеждать, не боясь трудностей». Окунувшись в череду бесконечных тренировок, юноша очень скоро стал делать первые успехи, лидировать в местных соревнованиях, получать награды. И в 18 лет парень пришел к первой крупной победе – выиграл чемпионат России по армейскому рукопашному бою.

К этому времени Анатолий уже стал отцом маленькой дочки. Появилась семья, новая ответственность. Словом, все это повлияло на решение Токова дебютировать в ММА.

Измерение силы электрического тока

Электрический ток измеряется амперметрами. Также часто используются многофункциональные измерительные электроприборы, например, мультиметры, которые могут быть переключены в том числе в режим измерения силы электрического тока, и работать как амперметры.

Амперметры всегда подключаются последовательно к потребителю, в котором измеряется сила тока. Это означает, что ток через потребителя будет соответствует току через амперметр.

Для того чтобы определить силу тока таким способом, необходимо разорвать электрическую цепь в месте измерения и вставить амперметр.

Включают амперметр в цепь с помощью двух клемм, или зажимов, имеющихся на приборе. У одной из клемм амперметра, как правило, стоит знак «+», у другой «-» (иногда знака «-» нет). Клемму со знаком «+» нужно обязательно соединять с проводом, идущим от положительного полюса источника тока.

Поскольку амперметр также имеет внутреннее сопротивление, оно влияет на электрическую цепь во время измерения. Однако сопротивление амперметра обычно настолько мало, что им можно пренебречь.

На рисунке 1 показано такое последовательное соединение на примере лампочки и амперметра.

Измерение силы тока

Если вы не хотите вмешиваться в электрическую цепь, отсоединяя проводники, то электрический ток также можно измерить косвенно с помощью токовых клещей. Другой вариант — измерить напряжение на потребителе, а затем, зная электрическое сопротивление потребителя, рассчитать ток, используя закон Ома.